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Abstract The aim of this text is to present a surface hopping approximation for
molecular quantum dynamics obeying a Schrödinger equation with crossing eigen-
value surfaces. After motivating Schrödinger equations with matrix valued potentials,
we describe the single switch algorithm and present some numerical results. Then
we discuss the algorithm’s mathematical justification and describe extensions to more
general situations, where three eigenvalue surfaces intersect or the eigenvalues are of
multiplicity two. We emphasize the generality of this surface hopping approximation
for non-adiabatic transitions.
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1 Molecular quantum dynamics

1.1 The Schrödinger equation

The quantum-mechanical description of molecular dynamics is given by the time-
dependent Schrödinger equation

{
iε ∂t�

ε = H ε
mol �

ε,

�εt=0 = �ε0 ∈ L2(R3N ,C).
(1.1)
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The integer N is N = ke + kn , where kn is the number of nuclei and ke the num-
ber of electrons. If q ∈ Rd , d = 3kn , denotes the nucleonic coordinates, then the
Hamiltonian H ε

mol writes

H ε
mol = −ε

2

2
�q + He(q),

where He(q) is the electronic Hamiltonian. It comprises the electrons’ kinetics, the
electronic interaction and the interaction between electrons and nuclei for fixed nucle-
onic position q. In atomic units, the electronic mass is one, while the average nucleonic
mass M is large. Therefore the parameter ε is small:

ε = √
1/M � 1.

Placing ε in front of the time derivative in (1.1) singles out the effective time scale, on
which relevant nucleonic quantum motion is expected.

1.2 The energy surfaces

We consider σ∗(q) a closed isolated subset of the spectrum σ(He(q)), we suppose that

σ∗(q) = {λ+(q), λ−(q)}, λ−(q) ≤ λ+(q)

with λ+(q) and λ−(q) eigenvalues of multiplicity 1, and we suppose that there exists a
smooth real-valued basis of the vector space�(q)which is the sum of the eigenspaces
associated with λ+(q) and λ−(q).

If the initial data �ε0(q) ∈ �(q), then �ε can be approximated by a Born-Oppen-
heimer solution �εBO modulo an error of order ε: ∃C > 0,∀t > 0,

‖�ε(t)−�εBO(t)‖L2 ≤ C(1 + |t |) ε.
Since the basis of �(q) is real-valued, the nucleonic components of �εBO satisfy the
Schrödinger system

{
iε∂tψ

ε = − ε2

2 �qψ
ε + V (q)ψε,

ψεt=0 = ψε0 ∈ L2(Rd ,C2),
(1.2)

where the potential V (q) is a smooth function, whose values are 2 × 2 real symmetric
matrices (see [19] or [18]); besides, the eigenvalues of V (q) are λ+(q) and λ−(q).

We denote by g the gap function

g(q) = λ+(q)− λ−(q).

The function g is non-negative and smooth outside the set

S = {q ∈ Rd ; g(q) = 0},
on which the eigenvalues coincide.
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1.3 The effective potential

We write

V (q) = α(q) Id + V0(q),

where α(q) = 1
2

(
λ+(q)+ λ−(q)

)
is the half of the trace of the matrix V (q), and

V0(q) denotes the trace-free part of V (q),

V0(q) =
(
β(q) γ (q)
γ (q) −β(q)

)
.

In this notation, g(q) = 2
√
β(q)2 + γ (q)2. The matrix V (q) is the prototype potential

for crossings of two eigenvalues of multiplicity 1.
Consider now the eigenprojectors ±(q):

±(q) = 1

2

(
Id ± 2

g(q)
V (q)

)
.

They are smooth away from the crossing S. We choose initial data for the wave function
which are localized along the plus or the minus level. They are of the form

ψε0 (q) = +(q)ψε0 (q) or ψε0 (q) = −(q)ψε0 (q).

We analyze the solution to (1.2) for small values of ε.

1.4 The Wigner transform

The wave function by itself has no physical meaning, and the quantities of interest are
quadratic functions of it such as

• the energy level populations:

t 	→ (
±(q)ψε(t, q), ψε(t, q)

)
L2(Rd ,C2)

,

• the position expectation value with respect to the j th direction:

t 	→ (
q jψ

ε(t, q), ψε(t, q)
)

L2(Rd ,C2)
,

• the momentum expectation value with respect to the j-th direction:

t 	→ (−iε∂ jψ
ε(t, q), ψε(t, q)

)
L2(Rd ,C2)

.
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The analysis of these quadratic functionals leads to the study of quantities of the form

Lε(a(q)) =
∫

Rd

(
a(q)ψε(t, q), ψε(t, q)

)
C2 dq

or

Lε(b(p)) = (2π)−d
∫

Rd

(
b(p)ψ̂ε(t, p/ε), ψ̂ε(t, p/ε)

)
C2 dp

with a, b ∈ C∞(Rd ,C2,2). Therefore, we focus on the description of the time evolution
of the Wigner transform of ψε(t),

W ε
(
ψε(t)

)
(q, p) = (2π)−d

∫

Rd

ψε
(

q − ε

2
v, t

)
⊗ ψε

(
q + ε

2
v, t

)
ei v·p dv, (1.3)

which plays the role of a generalized density on phase space. Indeed, one can check
that

Lε(a(q)) =
∫

R2d

tr
(
a(q)W ε(ψε(t))(q, p)

)
dq dp,

Lε(b(p)) =
∫

R2d

tr
(
b(p)W ε(ψε(t))(q, p)

)
dq dp.

We mention that other density functions on phase space could be considered in place
of the Wigner function. However, the single switch approximation we are aiming at is
tailored to the Wigner function, see also [14, §7.2].

We focus here on quadratic quantities related to one precise mode and study the
diagonal part of the Wigner transform, ±(q)W ε(ψε(t))(q, p)±(q), before and
after passing the crossing S. Since the eigenvalues are of multiplicity 1, these matrices
are utterly characterized by their traces, and we study

wε±(t, q, p) = tr
(
±(q)W ε(ψε(t))(q, p)±(q)

)
.

Our aim is to describe the evolution of wε±(t) in terms of wε+(0) or wε−(0) for small
values of ε.

1.5 The classical trajectories

We consider the classical flow

�t± : R2d → R2d , �t±(q0, p0) = (
q±(t), p±(t)

)
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associated with the Hamiltonian curves of |p|2
2 + λ±(q):

{
q̇±(t) = p±(t), ṗ±(t) = −∇λ± (

q±(t)
)
,

q±(0) = q0, p±(0) = p0

• As long as g(q) = O(1), the classical flows �t± are enough for an approximate
description of the dynamics:

∫

R2d

(
wε±(t)− wε±(0) ◦�−t±

)
(q, p) a(q, p) dq dp = O(ε).

This is an approximation in the spirit of the Egoroff Theorem.
• If g(q) is much larger than

√
ε in a sense that can be made precise, one can prove

that this approximation description still holds in a weaker sense (see Proposi-
tion 2.3 in [7] for precise statements).

• If g(q) = O(
√
ε) this approximation is no longer valid, and there are non-

adiabatic transitions between the levels. The energy propagated until the tran-
sition region on one level may pass (partially or utterly) to the other one.

We denote by Uε the transition region

Uε = {q ∈ Rd ; g(q) ≤ R
√
ε},

where R > 0 is a constant arbitrarily chosen. It is in this region that the Egoroff type
approximation fails and where transitions between the levels occur.

Note that the classical trajectories are well defined as long as g is smooth, i.e. as
long as g(q) �= 0. However, if the assumption

(p · ∇β(q), p · ∇γ (q)) �= 0 (1.4)

is satisfied near a crossing point q ∈ S, then any classical trajectory reaching the
point q with momentum p has a unique continuation through it (see [6]). We will
see the importance of this condition in Sect. 5, when discussing the limitations of our
approximation.

2 The single switch algorithm

2.1 Main description

We suppose that the initial data are localized along the plus level: ψε0 (q) =
+(q)ψε0 (q). The situation where the initial data is on the other level is treated anal-
ogously. For high dimensions, a Monte-Carlo approach is more appropriate than a
grid-based algorithm (see Sect. 5.1 for such a procedure). The single switch algorithm
consists of four steps:
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(1) One samples the initial Wigner functions (q, p) 	→ wε+(0, q, p) to obtain a set
of N+(0) phase space points

(q+
j , p+

j ), 1 ≤ j ≤ N+(0),

so that

1

N+(0)

N+(0)∑
j=1

a(q+
j , p+

j ) ≈
∫

a(q, p)wε+(0, q, p)dq dp.

We note that the numerical computation of the oscillatory Fourier integrals (1.3)
determining the values of wε+(0) is challenging in high dimensions, see also
[14].

(2) One proceeds to classical transport of the sampling points and obtains at each
time t a family of points

(q+
j (t), p+

j (t)), 1 ≤ j ≤ N+(0).

(3) Whenever these trajectories attain a local minimal eigenvalue gap inside the tran-
sition region Uε, one allows for hops to the other surface. Suppose the trajectory
t 	→ (q+(t), p+(t)) reaches its minimal gap at time t∗, that is, t 	→ g(q+(t))
attains a local mimimum for t = t∗. One evaluates the transition rate

Tε(q
∗, p∗) = exp

(
− π

4ε

g(q∗)2

|det p∗ · ∇V0(q∗)|1/2
)

in the point

(q∗, p∗) = (q+(t∗), p+(t∗)),

where

|det p∗ · ∇V0(q
∗)| = (

p∗ · ∇β(q∗)
)2 + (

p∗ · ∇γ (q∗)
)2
.

Then one uses an accept-reject procedure and compares with a pseudo random
number ξ uniformly distributed in the interval [0,1]. If ξ < Tε(q∗, p∗), then the
trajectory is continued on the upper level. Otherwise, one hops to the lower level
and initiates a trajectory in (q−(t∗), p−(t∗)) = (q∗, p∗ + ω(q∗, p∗)), where
the drift may be chosen as

ω(q∗, p∗) = g(q∗) p∗

|p∗|2 .

In this way one obtains a family of points

(q±
j (t), p±

j (t)), 1 ≤ j ≤ N±(t).
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In Sect. 2.2 below the drift and a simple criterium for determining local minimal
gaps are discussed, while a heuristic derivation of the transition rate is provided
in Sect. 4.1.

(4) At some final time t f , we are left with two sets of phase space points, one
related with the upper surface and the other with the lower one. If N = N+(t f )

points (q1, p1), . . . , (qN , pN ) have arrived on the upper surface, for example,
then expectation values can be approximated as

∫

R2d

a(q, p)wε+(t, q, p)dq dp ≈ 1

N

N∑
j=1

a(q j , p j ).

2.2 Drift and jump criterium

We now motivate the choice of the drift and discuss a criterium for local minimal gaps.
At a jump point (q∗, p∗) one shifts the initial momentum of the created trajectory in
order to preserve the energy of the trajectories up to O(ε). Indeed, the energy of a plus
incoming trajectory is

τ+(q∗, p∗) = 1

2
|p∗|2 + α(q∗)+ 1

2
g(q∗)

and the energy of a minus outgoing trajectory with momentum p∗
out = p∗+ω(q∗, p∗)

is

τ−(q∗, p∗
out ) = 1

2
|p∗ + ω(q∗, p∗)|2 + α(q∗)− 1

2
g(q∗).

The condition τ−(q∗, p∗
out ) = τ+(q∗, p∗)+ O(ε) is equivalent to ω(q∗, p∗) · p∗ +

1
2 |ω(q∗, p∗)|2 = g(q∗)+ O(ε). This can be ensured by choosing

ω(q∗, p∗) = g(q∗) p∗

|p∗|2 ,

since g(q∗)2 = O(ε). Note that in the work of Hagedorn and Joye (see [11] and [12])
a similar drift is required.

For monitoring the size of the gap we work with the smooth quantity

g(q)2 = 4
(
β(q)2 + γ (q)2

)
.

We observe that along a plus trajectory, we have

d

dt

[
g(q+(t))

]2 = 2 g(q+(t)) d

dt
g(q+(t))

= 2 g(q+(t)) p+(t) · ∇g(q+(t)).
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Therefore at time t∗, the function t 	→ g(q+(t)) p+(t) ·∇g(q+(t)) changes sign from
negative to positive, and a jump point (q∗, p∗) satisfies the equation

g(q∗)p∗ · ∇g(q∗) = 0. (2.1)

3 Numerical realization

To illustrate the behavior of the single switch algorithm we consider a simple example
of an avoided crossing in one space dimension, which meets the range of validity of
our analysis. Further numerical results for avoided crossings have been obtained in
[8], where the test cases discussed by J. Tully in [21] are revisited. Successful simu-
lations with the single switch algorithm for conical crossings have been reported in
[7,14,16], where model systems for the cis-trans isomerization of retinal in rhodopsin,
the internal conversion of pyrazine, and Jahn-Teller Hamiltonians have been treated.

The eigenvalues of the potential considered here are defined by smooth functions
and the coefficients except for the gap parameter δ are of order one with respect to the
semiclassical parameter ε. The potential matrix is of the form

V (q) =
(

arctan(q) δ

δ − arctan(q)

)
. (3.1)

The surfaces have their minimal gap at q = 0, see Fig. 1a. The initial data are multiples
of a Gaussian wave packet with phase space centers (q0, p0) ∈ R2 and of a real-valued
eigenvector e±(q) of the matrix V (q):

ψ0(q) = (πε)−1/4 exp

(
− 1

2ε
(q − q0)

2 + i

ε
p0(q − q0)

)
e±(q).

The semiclassical parameter ε is chosen as ε = 10−3, the gap parameter as δ = √
ε.

The initial data are associated with the upper eigenvector e+(q) and are centered
in the point (q0, p0) = (−1, 1). We simulate the dynamics for the time interval
[0, T ] = [0, 2].

The reference values are obtained from a numerically converged grid based solver,
a Strang splitting scheme with Fourier differencing. Since the initial wave function is
a Gaussian wave packet, the sampling fromwε+(0) is realized by drawing N = 2, 000
sampling points from a two-dimensional normal distribution. The results gathered in
Fig. 1b are the mean of ten independent runs of the single switch algorithm with the
same number of initial trajectories. The classical transport is discretized by a sym-
plectic fourth order Runge Kutta scheme.

After time t = 0.6 the wave function enters the crossing region and then the upper
level population drops down to 0.86. While running downhill the eigenvalue surface,
the momentum expectation value of the upper level monotonically increases up to
1.6. On the other side of the crossing, the upper surface has a positive slope, and the
momentum expectation gradually decreases down to 0.8. The surface hopping algo-
rithm computes the lower level population with an maximal error of 0.075 occurring
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Fig. 1 When the solution passes
by the avoided crossing, the
level population changes. The
single switch algorithm resolves
the non-adiabatic dynamics with
an error of few percent. a The
eigenvalue surfaces of (3.1). b
The dynamics of the population
and the momentum expectation
value for the upper level. c The
accuracy of the single switch
algorithm for the population and
momentum expectation value of
the lower level
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when the wave function passes the crossing, see Fig. 1c. Afterwards the population
error drops down to 0.03. The accuracy of the population is rather insensitive to the
drift. However, the lower level momentum expectation loses accuracy by a factor of
eight when supressing the drift.
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4 Theoretical justifications

The single switch algorithm follows ideas introduced by the second author with
S. Teufel in [17] which initiated the application of theoretical work on conical intersec-
tions by the first author and P. Gérard in [5]. The rigorous derivation of the algorithm
has been performed in the context of codimension 2 crossings in [7] and of avoided
crossing in [8]. Both papers use a normal form stated by Y. Colin de Verdière in [2]
which reduces the initial Schrödinger equation in the transition zone to the well-known
Landau-Zener model studied in the 30’s (see [15] and [23]). Then the transition rate
Tε(q∗, p∗) is a multidimensional version of the celebrated Landau-Zener formula, see
also [4].

4.1 Heuristic justification of the transition rate

The mathematical justification of the transition rates relies on a normal form which
reduces the mechanism of the transitions to the one of the Landau-Zener model.
A heuristic reduction to the Landau-Zener system comes from linearization along a
trajectory. Let us suppose that we have an avoided crossing with minimal gap of size
δ at the point q∗ such that

γ (q∗) = δγ ∗ + O(δ2), β(q∗) = 0.

We suppose δ small, in particular δ � √
ε. For simplicity, we also assume α = 0 and

we consider a plus trajectory arriving at time t∗ = 0 in (q∗, p∗). We perform a Taylor
expansion close to t = 0 of the function H(q+(t), p+(t)), where

H(q, p) := |p|2
2

+ V (q).

We obtain

H(q+(t), p+(t)) =
( |p∗|2

2
+ t f ∗

)
Id +

(
t β∗ δγ ∗
δγ ∗ −t β∗

)
+ O(δ2 + t2),

where

f ∗ = −p∗ · ∇λ+(q∗), β∗ = p∗ · ∇β(q∗).

By the non-degeneracy assumption (1.4), we have p · ∇β(q) �= 0 close to (q∗, p∗),
and therefore β∗ �= 0; we suppose β∗ > 0 and we set

s = t√
ε

√
β∗, η = δ√

ε

γ ∗
√
β∗ ,

ψε(t, q) = e−i(t |p∗|2+t2 f ∗)/(2ε)uε(s, η).
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Then the Schrödinger Eq. (1.2) reduces to the Landau-Zener system

i∂suε −
(

s η

η −s

)
uε = 0, (4.1)

where, strictly speaking, the right-hand side is not 0 but O(
√
ε) locally. The evolution

of uε is well-known:

uε(s, η) =
(

eis2 |s|iη2/2 αε1,±(η)
e−is2/2 |s|−iη2/2 αε2,±(η)

)
+ o(1) as s → ±∞,

where αε1,± characterizes the ±-mode for s > 0 and αε2,± the ∓-mode for s < 0.
Besides,

(
αε1,+
αε2,+

)
=

(
a(η) −b(η)
b(η) a(η)

) (
αε1,−
αε2,−

)
with a(η) = e−πη2/2.

The transition coefficient for the Landau-Zener system is

TL Z (η) = a(η)2 = e−πη2
.

Via

η = δ√
ε

γ ∗
√
β∗ = 1

2
√
ε

g(q∗)√
p∗ · ∇qβ(q∗)

+ O(δ2)

we obtain

TL Z (η) = exp

(
− π

4ε

g(q∗)2

|p∗ · ∇β(q∗)|
)
(1 + o(1)) = Tε(q

∗, p∗)(1 + o(1)).

4.2 Range of validity of the algorithm

We now focus on the specific assumptions for proving a rigorous mathematical der-
ivation in the context of codimension 2 crossings (see [7]) or avoided crossings (see
[8]). If those are not satisfied, the approximation is no longer valid, as shown by the
examples in [8]. We choose R > 0 fixed and assume that the transition region

Uε = {q ∈ Rd , g(q) ≤ R
√
ε}

is compact. Morover, we suppose:

• The test function a ∈ C∞
c

(
R2d

)
defining the expectation value of interest must

have its support away from the transition region Uε, since the non-adiabatic tran-
sitions are only described effectively by the hopping mechanism.
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• The initial data (ψε0 )ε>0 are associated with one specific mode, let’s say plus,
localized away from the transition region Uε and away from the set, which con-
tains the points issuing classical trajectories, which are degenerate in the sense,
that

(p · ∇β(q), p · ∇γ (q)) = 0

when reaching a local minimal gap in Uε. This assures the reduction to the
Landau-Zener model (4.1).

• Within the time-interval [0, t f ], each of the plus-trajectories arriving at the support
of the observable at time t f has performed at most one jump possibly generating
minus-trajectories which have not jumped at all. These assumptions are needed,
since possible interferences between +ψε(t) and −ψε(t) in the transition
region are not resolved due to the neglect of the off-diagonal components of the
Wigner transform in the approximation.

We emphasize, that our approximation does not apply to the degenerate situation
where Hamiltonian trajectories arrive near the crossing with zero momentum, since
then (p∗ · ∇β(q∗), p∗ · ∇γ (q∗)) = 0. So far, the are only few mathematical results on
degenerate crossings, see e.g. [3] for resolvant estimates for degenerate codimension
one crossings.

4.3 Adiabatic situations

We now consider two adiabatic situations with crossings: diagonal potentials and
smoothly diagonalizable ones. We first suppose that γ (q) = 0 for all q ∈ Rd . Then,
the gap is given by g(q) = |β(q)|, the crossing set is S = {q ∈ Rd; β(q) = 0}, and
the genericity assumption (1.4) writes as p ·∇β(q) �= 0. Moreover, the jump criterium
(2.1) becomes

β(q∗) p∗ · ∇β(q∗) = 0,

and there are only jumps at the points where β(q∗) = 0, which are in the crossing set.
Therefore, the transition rate is Tε(q∗, p∗) = 1: The energy propagates along the tra-
jectories associated with the eigenvalues α(q)±|β(q)| with switches form the plus to
minus (or conversely) at each crossing point: The resulting curves are the Hamiltonain
trajectories associated with α(q) + β(q) and α(q) − β(q). Therefore, our algorithm
respects the adiabatic theorem for diagonal potentials.

Let us now consider a potential V which has smooth eigenprojectors and smooth
eigenvalues with a non-empty crossing set (this happens for example for codimension
1 crossings, see [13]). The matrix V (q) now writes

V (q) = α(q) Id + 1

2
g(q)

(
+(q)−−(q)

)

with smooth functions g(q),+(q) and −(q). Therefore, one can find a smooth
normed vector e(q) such that +(q) − −(q) = Id − 2 e(q) ⊗ e(q), and it is not
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difficult to see that such a matrix writes

+(q)−−(q) =
(

cos θ(q) sin θ(q)
sin θ(q) −cos θ(q)

)

for a smooth function θ(q). Therefore,

β(q) = 1

2
g(q) cos θ(q) and γ (q) = 1

2
g(q) sin θ(q),

and the genericity condition (1.4) implies

p · ∇g(q) �= 0

for q ∈ Uε. Hence, the jump criterimum (2.1) is satisfied only for points in the crossing
set, where the transition rate is Tε(q∗, p∗) = 1. Here again, the surface hopping
description preserves the adiabatic theorem: The quantities wε± propagate along the
smooth trajectories associated with α(q)± g(q).

5 Generalizations

It is also possible to generalize the algorithm to potentials with crossings of three eigen-
values such as Pseudo-Jahn Taller’s potentials and to potentials where the eigenvalues
are of multiplicity 2 (Hagedorn’s potential). We now discuss these issues.

5.1 Twofold eigenvalues

In the monograph [10], Hagedorn derives potentials

Vhag(q) = α(q)Id +
(

V0(q) 02
02 V0(q)

)
,

which are 4 by 4 matrices with twofold eigenvaluesλ+(q) andλ−(q): their crossing set
is of codimension two, three or five. For these models, the solution to the Schrödinger
equation

{
iε∂tψ

ε = − ε2

2 �qψ
ε + Vhag(q)ψε,

ψεt=0 = ψε0 ∈ L2(Rd ,C4),
(5.1)

is a vector of C4. The fact that the eigenspaces are twofold implies that the diagonal
parts of the Wigner transform W ε(ψε(t)) are no longer characterized by their traces
and one has to work with the matrices±W ε(ψε(t))± themselves. For considering
matrix valued observables

a(q, p) = a+(q, p)+(q)+ a−(q, p)−(q)
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the single switch algorithm has to be modified as follows (see also [7]). For simplicity,
we still consider initial data localized on the plus level:

(1) The initial sampling works with the four-by-four matrix +(W ε(ψε0 ))
+ and

produces phase space points (q+
j , p+

j ) ∈ R2d with associated matrix-valued

weights W +
j ∈ C4,4,

(q+
j , p+

j ,W +
j ), 1 ≤ j ≤ N+(0).

(2) Classical transport by q̇+ = p+, ṗ+ = −∇qλ
+(q+),

(q+
j (t), p+

j (t)), 1 ≤ j ≤ N+(0).

(3) Possibility of surface hopping when a trajectory attains a local minimal gap with
transition probability Tε(q∗, p∗). If the trajectory remains on the same level, one
conjugates the weight with a unitary matrix R(q∗, p∗). (A precise formula for
this matrix is given in [7].) That is, a remaining trajectory carries the weight

R(q∗, p∗)W +
j R(q∗, p∗).

(4) Computation of final expectation values via phase space summation.

The new phenomenon is the conjugation by the matrix R(q∗, p∗) which ensures
that the transported matrix is correctly polarized after passing the crossing.

5.2 Pseudo Jahn-Teller Hamiltonian

Let us suppose that the potential in the Schrödinger equation is given by

V (q) =
⎛
⎝ q1 0 q2/

√
2

0 −q1 q2/
√

2
q2/

√
2 q2/

√
2 0

⎞
⎠ .

The wave function is now a vector of C3 and we have three modes 0,
√

q2
1 + q2

2 and

−
√

q2
1 + q2

2 which interact together. Surface hopping extends to this context, which
is supported by the mathematical results of [9]. Beginning with initial data localised
on the plus level, at the minimal gap (which is evaluated by the function |q|), one gen-
erates two trajectories: one for the minus level and one for the 0-level. The transitions
probabilities of the underlying model problem have been calculated by Brundobler and
Elser (see [1]). However, for the moment, the generalization to more general potentials

VP J T (q) = α(q)Id +
⎛
⎝β(q) 0 γ (q)

0 −β(q) γ (q)
γ (q) γ (q) 0

⎞
⎠

is not clear.
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6 Conclusion

The single switch algorithm has a rigorous mathematical derivation which also pro-
vides asymptotic error estimates (see [7] and [8]); this analysis has been carried out
in the context of codimension 2 crossings and avoided ones. However, the algorithm
can be implemented de facto in more general situations and even gives leading order
approximations in adiabatic situations.

The single switch algorithm is a surface hopping algorithm in the continuity of
the first one introduced by Tully and Preston in the 70’s (see [20,21]). Since surface
hopping schemes are applicable in high dimensional configuration spaces, as soon
as the sampling of the initial data is achieved, they are very popular for simulating
non-adiabatic dynamics.

The specific feature of the single switch algorithm is its hopping criterium. Non-
adiabatic transitions are only allowed at local minimal surface gaps for sufficiently
small gaps. In that respect, the surface hopping algorithm of Voronin, Marques and
Varandas (see [22]) is the algorithm in the chemical literature, which is closest to the
single switch approach. Most of the well-established surface hopping schemes allow
for non-adiabatic transitions at any time (see [16] for a comparison).

The main open problem are interlevel interferences near the crossing: How does
one resolve the dynamics of two wave packets arriving in the transition region on two
different levels and interacting with each other? One can construct specific initial data
(see [4]) such that the algorithmic description presented here is no longer valid and
produces wrong numerical results [8].
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